Regulation of thyroid oxidative state by thioredoxin reductase has a crucial role in thyroid responses to iodide excess.
نویسندگان
چکیده
The phenomenon that supraphysiological doses of iodide (I(-)) temporarily inhibit thyroid hormone synthesis is known as thyroid iodide autoregulation. Recovery of thyroid function has been attributed to sodium-iodide symporter (NIS) inhibition, but the diversity of available data makes it difficult to reach definitive conclusions. Iodide excess induces reactive oxygen species production and cell toxicity. However, the roles of the oxidative state of the cell and antioxidant selenoproteins in I(-) autoregulation have never been explored. Here we analyze the effects of high I(-) doses in rat thyroids and in PCCl3 cells in the period comprising I(-) autoregulation (i.e. 0-72 h after I(-) administration), focusing on NIS expression, redox state, and the expression and activity of selenoproteins. Our results show that NIS mRNA inhibition by I(-) does not occur at the transcriptional level, because neither NIS promoter activity nor Pax8 expression or its binding to DNA was modulated. Because I(-) uptake was inhibited much earlier than NIS protein, and no effect was observed on its subcellular localization, we suggest that I(-) is inhibiting NIS in the plasma membrane. The increased reactive oxygen species production leads to an increase in thioredoxin reductase mRNA levels and enzyme activity, which reduces the oxidative stress. Inhibition of thioredoxin reductase at either gene expression or activity levels prevented NIS recovery, thus illustrating a new role played by this selenoprotein in the regulation of cell homeostasis and consequently in I(-) autoregulation.
منابع مشابه
Selenium and thyroid autoimmunity
The trace element selenium (Se) occurs in the form of the amino acid selenocysteine in selenoproteins. Selenoproteins exerts multiple physiological effects in human health, many of which are related with regulation of reduction-oxidation processes. In fact, the selenoenzyme families of glutathione peroxidase (GPx) and thioredoxin reductase (TRx) display the ability to act as antioxidants, prote...
متن کاملVitamin E ameliorates iodine-induced cytotoxicity in thyroid.
Acute and excessive iodine supplementation leads to iodine-induced thyroid cytotoxicity. Excessive oxidative stress has been suggested to be one of the underlying mechanisms in the development of thyroid cytotoxicity. The aim of this study was to investigate whether vitamin E (VE), an important antioxidant, could ameliorate iodine-induced thyroid cytotoxicity. A goiter was induced in rats by fe...
متن کاملEffect of the micronutrient iodine in thyroid carcinoma angiogenesis
Iodide is a micronutrient essential for thyroid hormone production. The uptake and metabolism of iodide by thyrocytes is crucial to proper thyroid function. Iodide ions are drawn into the thyroid follicular cell via the sodium-iodide symporter (NIS) in the cell membrane and become integrated into tyrosyl residues to ultimately form thyroid hormones. We sought to learn how an abnormal concentrat...
متن کاملMetallothionein-I/II Knockout Mice Aggravate Mitochondrial Superoxide Production and Peroxiredoxin 3 Expression in Thyroid after Excessive Iodide Exposure
PURPOSE We aim to figure out the effect of metallothioneins on iodide excess induced oxidative stress in the thyroid. METHODS Eight-week-old MT-I/II knockout (MT-I/II KO) mice and background-matched wild-type (WT) mice were used. Mitochondrial superoxide production and peroxiredoxin (Prx) 3 expression were measured. RESULTS In in vitro study, more significant increases in mitochondrial supe...
متن کاملThe thioredoxin-thioredoxin reductase system: over-expression in human cancer.
Redox control has emerged as a fundamental biological control mechanism. One of the major redox control systems is the thioredoxin system comprised of thioredoxin (TRX) and thioredoxin reductase (TR). Together they form a powerful system involved in many central intracellular and extracellular processes including cell proliferation, the redox regulation of gene expression and signal transductio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular endocrinology
دوره 25 11 شماره
صفحات -
تاریخ انتشار 2011